Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(91): 14167-14170, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33079104

RESUMO

Receptor function is traditionally controlled from the orthosteric binding site of G-protein coupled receptors. Here, we show that the functional activity and signalling of human dopamine D2 and D3 receptor ligands can be fine-tuned from the extracellular secondary binding pocket (SBP) located far from the signalling interface suggesting optimization of the SBP binding part of bitopic ligands might be a useful strategy to develop GPCR ligands with designed functional and signalling profile.


Assuntos
Antipsicóticos/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Antipsicóticos/síntese química , Antipsicóticos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Transdução de Sinais/efeitos dos fármacos
2.
Sci Rep ; 6: 36680, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824163

RESUMO

P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7-/-), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7-/- animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia.


Assuntos
Córtex Cerebral/metabolismo , Fenciclidina/efeitos adversos , Células Piramidais/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Esquizofrenia/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/patologia , Camundongos , Camundongos Knockout , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fenciclidina/farmacologia , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Células Piramidais/patologia , Receptores Purinérgicos P2X7/genética , Esquizofrenia/induzido quimicamente , Esquizofrenia/genética , Esquizofrenia/patologia
3.
Neuropharmacology ; 104: 94-104, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26384652

RESUMO

The principle functions of neuroinflammation are to limit tissue damage and promote tissue repair in response to pathogens or injury. While neuroinflammation has utility, pathophysiological inflammatory responses, to some extent, underlie almost all neuropathology. Understanding the mechanisms that control the three stages of inflammation (initiation, propagation and resolution) is therefore of critical importance for developing treatments for diseases of the central nervous system. The purinergic signaling system, involving adenosine, ATP and other purines, plus a host of P1 and P2 receptor subtypes, controls inflammatory responses in complex ways. Activation of the inflammasome, leading to release of pro-inflammatory cytokines, activation and migration of microglia and altered astroglial function are key regulators of the neuroinflammatory response. Here, we review the role of P1 and P2 receptors in mediating these processes and examine their contribution to disorders of the nervous system. Firstly, we give an overview of the concept of neuroinflammation. We then discuss the contribution of P2X, P2Y and P1 receptors to the underlying processes, including a discussion of cross-talk between these different pathways. Finally, we give an overview of the current understanding of purinergic contributions to neuroinflammation in the context of specific disorders of the central nervous system, with special emphasis on neuropsychiatric disorders, characterized by chronic low grade inflammation or maternal inflammation. An understanding of the important purinergic contribution to neuroinflammation underlying neuropathology is likely to be a necessary step towards the development of effective interventions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Assuntos
Encefalite/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encefalite/congênito , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação , Receptor Cross-Talk , Transdução de Sinais
4.
Neurobiol Dis ; 70: 162-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24971933

RESUMO

In this study the role of P2Y12 receptors (P2Y12R) was explored in rodent models of inflammatory and neuropathic pain and in acute thermal nociception. In correlation with their activity to block the recombinant human P2Y12R, the majority of P2Y12R antagonists alleviated mechanical hyperalgesia dose-dependently, following intraplantar CFA injection, and after partial ligation of the sciatic nerve in rats. They also caused an increase in thermal nociceptive threshold in the hot plate test. Among the six P2Y12R antagonists evaluated in the pain studies, the selective P2Y12 receptor antagonist PSB-0739 was most potent upon intrathecal application. P2Y12R mRNA and IL-1ß protein were time-dependently overexpressed in the rat hind paw and lumbar spinal cord following intraplantar CFA injection. This was accompanied by the upregulation of TNF-α, IL-6 and IL-10 in the hind paw. PSB-0739 (0.3mg/kg i.t.) attenuated CFA-induced expression of cytokines in the hind paw and of IL-1ß in the spinal cord. Subdiaphragmatic vagotomy and the α7 nicotinic acetylcholine receptor antagonist MLA occluded the effect of PSB-0739 (i.t.) on pain behavior and peripheral cytokine induction. Denervation of sympathetic nerves by 6-OHDA pretreatment did not affect the action of PSB-0739. PSB-0739, in an analgesic dose, did not influence motor coordination and platelet aggregation. Genetic deletion of the P2Y12R in mice reproduced the effect of P2Y12R antagonists on mechanical hyperalgesia in inflammatory and neuropathic pain models, on acute thermal nociception and on the induction of spinal IL-1ß. Here we report the robust involvement of the P2Y12R in inflammatory pain. The anti-hyperalgesic effect of P2Y12R antagonism could be mediated by the inhibition of both central and peripheral cytokine production and involves α7-receptor mediated efferent pathways.


Assuntos
Citocinas/metabolismo , Dor/tratamento farmacológico , Dor/fisiopatologia , Receptores Purinérgicos P2Y12/metabolismo , Analgésicos/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Quimera , Cricetulus , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Ratos Wistar , Receptores Purinérgicos P2Y12/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...